Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.534
Filtrar
1.
J Nat Prod ; 86(11): 2592-2619, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856864

RESUMO

Catecholamines (CAs) are aromatic amines containing a 3,4-dihydroxyphenyl nucleus and an amine side chain. Representative CAs included the endogenous neurotransmitters epinephrine, norepinephrine, and dopamine. CAs and their derivatives are good resources for the development of sympathomimetic or central nervous system drugs, while they also provide ligands important for G-protein coupled receptor (GPCR) research. CAs are of broad interest in the fields of chemical, biological, medical, and material sciences due to their high adhesive capacities, chemical reactivities, metal-chelating abilities, redox activities, excellent biocompatibilities, and ease of degradability. Herein, we summarize CAs derivatives isolated and identified from microorganisms, plants, insects, and marine invertebrates in recent decades, alongside their wide range of reported biological activities. The aim of this review is to provide an overview of the structural and biological diversities of CAs, the regularity of their natural occurrences, and insights toward future research and development pertinent to this important class of naturally occurring compounds.


Assuntos
Catecolaminas , Norepinefrina , Catecolaminas/análise , Catecolaminas/química , Catecolaminas/fisiologia , Norepinefrina/análise , Epinefrina/análise , Dopamina , Aminas
2.
Environ Pollut ; 309: 119822, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870527

RESUMO

Air pollution is a major trigger of chronic obstructive pulmonary disease (COPD). Dysregulation of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes is essential in progression of COPD. However, it is not clear whether air pollution exposure is associated with neuroendocrine responses in individuals with and without COPD. Based on a panel study of 51 stable COPD patients and 78 non-COPD participants with 384 clinical visits, we measured the morning serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, norepinephrine, and epinephrine as indicators of stress hormones released from the HPA and SAM axes. Ambient nitrogen dioxide (NO2), fine particulate matter (PM2.5), and meteorological conditions were continuously monitored at the station from 2 weeks before the start of clinical visits. Linear mixed-effects models were used to estimate associations between differences in stress hormones following an average of 1-14-day exposures to NO2 and PM2.5. The average 1 day air pollutant levels prior to the clinical visits were 24.4 ± 14.0 ppb for NO2 and 55.6 ± 41.5 µg/m3 for PM2.5. We observed significant increases in CRH, ACTH, and norepinephrine, and decreases in cortisol and epinephrine with interquartile range increase in the average NO2 and PM2.5 concentrations in all participants. In the stratified analyses, we identified significant between-group difference in epinephrine following NO2 exposure in individuals with and without COPD. These results may suggest the susceptibility of COPD patients to the neuroendocrine responses associated with short-term air pollution exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Hormônio Adrenocorticotrópico/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , Exposição Ambiental/análise , Epinefrina/análise , Humanos , Hidrocortisona , Dióxido de Nitrogênio/análise , Norepinefrina/análise , Material Particulado/análise
3.
Anal Bioanal Chem ; 414(2): 1163-1176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34718838

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique capable of increasing the Raman signal of an analyte using specific nanostructures. The close contact between those nanostructures, usually a suspension of nanoparticles, and the molecule of interest produces an important exaltation of the intensity of the Raman signal. Even if the exaltation leads to an improvement of Raman spectroscopy sensitivity, the complexity of the SERS signal and the numbers of parameters to be controlled allow the use of SERS for detection rather than quantification. The aim of this study was to develop a robust discriminative and quantitative analysis in accordance with pharmaceutical standards. In this present work, we develop a discriminative and quantitative analysis based on the previous optimized parameters obtained by the design of experiments fixed for norepinephrine (NOR) and extended to epinephrine (EPI) which are two neurotransmitters with very similar structures. Studying the short evolution of the Raman signal intensity over time coupled with chemometric tools allowed the identification of outliers and their removal from the data set. The discriminant analysis showed an excellent separation of EPI and NOR. The comparative analysis of the data showed the superiority of the multivariate analysis after logarithmic transformation. The quantitative analysis allowed the development of robust quantification models from several gold nanoparticle batches with limits of quantification of 32 µg/mL for NOR and below 20 µg/mL for EPI even though no Raman signal is observable for such concentrations. This study improves SERS analysis over ultrasensitive detection for discrimination and quantification using a handheld Raman spectrometer.


Assuntos
Epinefrina/análise , Ouro/química , Nanopartículas Metálicas/química , Norepinefrina/análise , Análise Espectral Raman/métodos
4.
J Am Soc Mass Spectrom ; 32(8): 2144-2152, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34293862

RESUMO

Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) equipped with electrospray ionization (ESI) is widely employed for metabolite analysis, substituted phenethylamines commonly undergo fragmentation during ESI in-source collision-induced dissociation (CID). Unexpected fragmentation hampers not only unambiguous identification but also accurate metabolite quantification. ESI in-source CID induces N-Cα bond dissociation in substituted phenethylamines lacking a ß-hydroxy group to produce fragment ions with a spiro[2.5]octadienylium motif. In contrast, phenethylamines with a ß-hydroxy group generate substituted 2-phenylaziridium through ESI in-source CID-induced H2O loss. The fragment ion yield produced by ESI in-source CID can be estimated by the dissociation rate constant and internal energy of the analyte ion, determined by employing density functional theory calculations and the survival yield method using a thermometer ion, respectively. Fragmentation is strongly enhanced by the presence of an ß-hydroxy group, whereas N-methylation suppresses fragmentation. In particular, octopamine and noradrenaline, which contain an ß-hydroxy and primary amine groups, produce more intense fragment ion signals than protonated molecules. Regarding the quantitative analysis of phenethylamines present in the mouse brain, the noradrenaline fragment ion used as the precursor in multiple reaction monitoring (MRM) provided a higher signal-to-noise ratio in the resulting spectra than protonated noradrenaline. The present method allows for the quantitative analysis of substituted phenethylamines with high sensitivity.


Assuntos
Neurotransmissores/análise , Fenetilaminas/análise , Fenetilaminas/química , Animais , Química Encefálica , Fracionamento Químico , Cromatografia Líquida , Dopamina/análise , Dopamina/química , Masculino , Camundongos Endogâmicos C57BL , Neurotransmissores/química , Norepinefrina/análise , Norepinefrina/química , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Tiramina/análise , Tiramina/química
5.
Mediators Inflamm ; 2021: 9938486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986629

RESUMO

This study explored the effects of renal sympathetic denervation (RDN) on hyperlipidity-induced cardiac hypertrophy in beagle dogs. Sixty beagles were randomly assigned to the control group, RDN group, or sham-operated group. The control group was fed with a basal diet, while the other two groups were given a high-fat diet to induce model hypertension. The RDN group underwent an RDN procedure, and the sham-operated group underwent only renal arteriography. At 1, 3, and 6 months after the RDN procedure, the diastolic blood pressure (DBP) and systolic blood pressure (SBP) levels were markedly decreased in the RDN group relative to the sham group (P < 0.05). After 6 months, serum norepinephrine (NE) and angiotensin II (AngII), as well as left ventricular levels, in the RDN group were statistically lower than those in the sham group (P < 0.05). Also, the left ventricular mass (LVM) and left ventricular mass index (LVMI) were significantly decreased, while the E/A peak ratio was drastically elevated (P < 0.05). Pathological examination showed that the degree of left ventricular hypertrophy and fibrosis in the RDN group was statistically decreased relative to those of the sham group and that the collagen volume fraction (CVF) and perivascular circumferential collagen area (PVCA) were also significantly reduced (P < 0.05). Renal sympathetic denervation not only effectively reduced blood pressure levels in hypertensive dogs but also reduced left ventricular hypertrophy and myocardial fibrosis and improved left ventricular diastolic function. The underlying mechanisms may involve a reduction of NE and AngII levels in the circulation and myocardial tissues, which would lead to the delayed occurrence of left ventricular remodeling.


Assuntos
Ablação por Cateter/métodos , Hipertensão/cirurgia , Hipertrofia Ventricular Esquerda/cirurgia , Simpatectomia/métodos , Angiotensina II/análise , Angiotensina II/fisiologia , Animais , Ablação por Cateter/efeitos adversos , Cães , Feminino , Hipertrofia Ventricular Esquerda/patologia , Masculino , Norepinefrina/análise , Norepinefrina/fisiologia , Simpatectomia/efeitos adversos
6.
J Immunol Res ; 2021: 5580672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855088

RESUMO

METHODS: Monoamine neurotransmitters were detected in gastric cancer tissue and paired normal tissue, and The Cancer Genome Atlas was used to identify differentially expressed norepinephrine-degrading and synthetic enzymes. Quantitative real-time PCR and the Seahorse assay were used to determine the effect of norepinephrine on gastric cancer cell glycolysis. MAOA expression in cancer tissues was analyzed by immunohistochemistry and was compared with the patient SUVmax value of PET-CT and other clinicopathological characteristics. RESULTS: The norepinephrine levels were markedly high in gastric cancer tissue, while the norepinephrine-degrading enzymes MAOA and MAOB showed low expression. High norepinephrine levels were associated with activated glycolysis. The MAOA or MAOB expression levels in tumor tissue were closely correlated with the patient SUV max values of PET-CT and immunotherapy evaluation indices, such as PD-L1 and the microsatellite status. CONCLUSIONS: Norepinephrine shows relatively higher expression in gastric cancer tissue than in normal tissue, and its expression level is associated with the glycolysis levels in patients. The norepinephrine-degrading enzymes MAOA and MAOB have significant expression differences in cancer and normal tissue, and their missing or low expression may predict immune therapy outcomes for gastric cancer patients. High norepinephrine levels with metabolic abnormalities may be more suitable for metabolic targeted therapy or immunotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Norepinefrina/metabolismo , Neoplasias Gástricas/imunologia , Efeito Warburg em Oncologia , Antimetabólitos Antineoplásicos , Antineoplásicos Imunológicos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Mucosa Gástrica/enzimologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Humanos , Imuno-Histoquímica , Monoaminoxidase/análise , Monoaminoxidase/metabolismo , Norepinefrina/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120955

RESUMO

Adrenaline, which participates in the neuroendocrine response that occurs during stress and perimenopause, may be tumorigenic. This exploratory study aimed at investigating whether non-tumorigenic and tumorigenic human breast epithelial cell lines are able to synthesize adrenaline. The study was carried out in non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) human breast cell lines. Expression of enzymes involved in adrenaline synthesis was characterized by RT-qPCR, immunocytochemistry and western blot. Catecholamines and analogue compounds were quantified by HPLC-ECD. Functional assessment of the impact of drugs on cells' tumorigenic potential was assessed by determination of cell viability and clonogenic ability. Both MCF-10A and MCF-7 cells produce catecholamines, but the capacity to produce adrenaline is lower in MCF-10A cells. ß-adrenoceptor activation increases the capacity of MCF-10A cells to produce adrenaline and favor both cell viability and colony formation. It is concluded that exposure of human breast epithelial cells to ß-adrenoceptor agonists increases cell proliferation and the capacity to produce adrenaline, creating an autocrine potential to spread these adrenergic effects in a feed-forward loop. It is conceivable that these effects are related to tumorigenesis, bringing a new perspective to understand the claimed anticancer effects of propranolol and the increase in breast cancer incidence caused by stress or during perimenopause.


Assuntos
Agonistas Adrenérgicos/farmacologia , Neoplasias da Mama/metabolismo , Mama/citologia , Catecolaminas/biossíntese , Receptores Adrenérgicos/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/genética , Catecolaminas/análise , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/análise , Epinefrina/análise , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Norepinefrina/análise , Propranolol/farmacologia
8.
Yakugaku Zasshi ; 140(8): 979-983, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32741871

RESUMO

Monoamine neurotransmitters are released by specialized neurons that regulate behavioral and cognitive functions. Although localization of monoaminergic neurons in the brain is well known, the distribution, concentration, and kinetics of monoamines remain unclear. We used mass spectrometry imaging (MSI) for simultaneous and quantitative imaging of endogenous monoamines to generate a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels. We observed several nuclei rich in both 5-HT and a catecholamine (DA or NE). Additionally, we analyzed de novo monoamine synthesis or fluctuations in those nuclei. We propose that MSI is a useful tool to gain deeper understanding of associations among the localization, levels, and turnover of monoamines in different brain areas and their role in inducing behavioral changes.


Assuntos
Monoaminas Biogênicas/análise , Monoaminas Biogênicas/metabolismo , Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Neurotransmissores/metabolismo , Animais , Dopamina/análise , Dopamina/metabolismo , Camundongos , Neurônios/metabolismo , Neurotransmissores/fisiologia , Norepinefrina/análise , Norepinefrina/metabolismo , Serotonina/análise , Serotonina/metabolismo
9.
Sensors (Basel) ; 20(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823962

RESUMO

Although neurotransmitters are present in human serum at the nM level, any dysfunction of the catecholamines concentration may lead to numerous serious health problems. Due to this fact, rapid and sensitive catecholamines detection is extremely important in modern medicine. However, there is no device that would measure the concentration of these compounds in body fluids. The main goal of the present study is to design a simple as possible, cost-effective new biosensor-based system for the detection of neurotransmitters, using nontoxic reagents. The miniature Au-E biosensor was designed and constructed through the immobilization of tyrosinase on an electroactive layer of cysteamine and carbon nanoparticles covering the gold electrode. This sensing arrangement utilized the catalytic oxidation of norepinephrine (NE) to NE quinone, measured with voltammetric techniques: cyclic voltammetry and differential pulse voltammetry. The prepared bio-system exhibited good parameters: a broad linear range (1-200 µM), limit of detection equal to 196 nM, limit of quantification equal to 312 nM, and high selectivity and sensitivity. It is noteworthy that described method was successfully applied for NE determination in real samples.


Assuntos
Técnicas Biossensoriais , Carbono/química , Técnicas Eletroquímicas , Monofenol Mono-Oxigenase/química , Norepinefrina/análise , Análise Custo-Benefício , Eletrodos , Ouro , Humanos , Limite de Detecção
10.
AAPS PharmSciTech ; 21(7): 247, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32862255

RESUMO

Norepinephrine is a potent α-sympathomimetic drug which plays an important role in the acute treatment of hypotension and shock. Commercially available norepinephrine solutions contain sodium metabisulfite (Na2S2O5) as an antioxidant. However, prefilled cyclic olefin polymer syringes are not compatible with sodium metabisulfite. The aim of this study was to develop a new formulation of 0.1-mg/mL norepinephrine solution without sodium metabisulfite which is chemically stable and sterile and can be stored in prefilled polymer syringes. Formulation studies were performed with 0.1-mg/mL norepinephrine solution with 0, 0.05, or 0.1% ascorbic acid added as antioxidant. The syringes were filled under nitrogen gassing, stored at 20 ± 5°C, and protected from daylight. Based on the formulation test results, the final formulation was defined and stability testing at 20 ± 5°C was performed measuring norepinephrine concentration, pH, clarity, color of the solution, subvisible particles, and sterility at time intervals up to 12 months. The norepinephrine concentrations at t = 22 weeks were 100.4%, 95.4%, and 92.2% for the formulations with no ascorbic acid and with 0.05% and 0.10% ascorbic acid, respectively. Three batches for the stability study were produced containing norepinephrine, sodium edetate, sodium chloride, and water for injections filled under nitrogen gassing and stored at 20 ± 5°C. Norepinephrine concentrations were respectively 98.8%, 98.6%, and 99.3% for batches 1, 2, and 3 at t = 12 months. It can be concluded that norepinephrine (0.1 mg/mL) solution without metabisulfite is stable for at least 12 months at room temperature when protected from daylight.


Assuntos
Alcenos/química , Antioxidantes/química , Norepinefrina/química , Esterilização/métodos , Seringas , Alcenos/análise , Antioxidantes/análise , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Armazenamento de Medicamentos/normas , Injeções , Norepinefrina/análise , Soluções Farmacêuticas/análise , Soluções Farmacêuticas/química , Seringas/normas
11.
Ann Anat ; 232: 151565, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32603826

RESUMO

BACKGROUND: Hot flashes (HF) caused by low estrogen in menopause result from changes in thermoregulatory processes in the hypothalamic preoptic area (POA). In the POA, transient receptor potential vanilloid 1 (TRPV1) participates in heat dissipation processes. Studies suggest that TRPV1 expression may be regulated by norepinephrine (NE)-activated α2-adrenergic receptors (α2-ADR) in the dorsal root ganglia. The goal of this study was to investigate the relationship between NE-regulated TRPV1 expression in the POA of ovariectomized rats and the development of HF. METHODS: Ninety female adult Sprague-Dawley rats were divided into three groups: SHAM, OVX and E2 (n = 30 per group). The numbers of TRPV1- and α2-ADR-positive cells and the expression of TRPV1 and α2-ADR in the POA of each group were determined using immunohistochemical staining after 4 weeks of estrogen treatment. Western blotting was used to detect the expression of TRPV1 and α2-ADR in the POA tissue, and NE content in the POA tissue was detected using high-performance liquid chromatography. In addition, the coexpression of TRPV1 and α2-ADR in POA neurons was investigated using immunofluorescent staining. RESULTS: In the POA of ovariectomized rats, the number of TRPV1-positive cells and TRPV1 expression increased while NE content decreased. Concomitantly, the number of α2-ADR-positive cells and α2-ADR expression decreased. Estrogen treatment reversed these changes in the POA of ovariectomized rats. In addition, we found that TRPV1 and α2-ADR were coexpressed in POA neurons. CONCLUSIONS: Under low-estrogen conditions, NE-activated α2-ADR regulated TRPV1 expression in the POA, and increased expression of TRPV1 may be an important factor for triggering HF.


Assuntos
Fogachos/etiologia , Norepinefrina/fisiologia , Área Pré-Óptica/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Estrogênios/administração & dosagem , Feminino , Imunofluorescência/métodos , Imuno-Histoquímica , Microscopia Confocal , Neurônios/metabolismo , Norepinefrina/análise , Ovariectomia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
12.
J Am Chem Soc ; 142(20): 9285-9301, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32395989

RESUMO

Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of VSDs by dynamic encapsulation and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.


Assuntos
Encéfalo , Cocaína/análogos & derivados , Dopamina/análise , Corantes Fluorescentes/química , Norepinefrina/análise , Animais , Encéfalo/citologia , Cocaína/síntese química , Cocaína/química , Corantes Fluorescentes/síntese química , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Imagem Óptica
13.
Anal Chem ; 92(12): 8536-8545, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32406234

RESUMO

Neurotransmitters are important chemicals in human physiological systems for initiating neuronal signaling pathways and in various critical health illnesses. However, concentration of neurotransmitters in the human body is very low (nM or pM level) and it is extremely difficult to detect the fluctuation of their concentrations in patients using existing electrochemical biosensors. In this work, we report the performance of highly densified carbon nanotubes fiber (HD-CNTf) cross-sections called rods (diameter ∼ 69 µm, and length ∼ 40 µm) as an ultrasensitive platform for detection of common neurotransmitters. HD-CNTf rods microelectrodes have open-ended CNTs exposed at the interface with electrolytes and cells and display a low impedance value, i.e., 1050 Ω. Their fabrication starts with dry spun CNT fibers that are encapsulated in an insulating polymer to preserve their structure and alignment. Arrays of HD-CNTf rods microelectrodes were applied to detect neurotransmitters, i.e., dopamine (DA), serotonin (5-HT), epinephrine (Epn), and norepinephrine (Norepn), using square wave voltammetry (SWV) and cyclic voltammetry (CV). They demonstrate good linearity in a broad linear range (1 nM to 100 µM) with an excellent limit of detection, i.e., 32 pM, 31 pM, 64 pM, and 9 pM for DA, 5-HT, Epn, and Norepn, respectively. To demonstrate practical application of HD-CNTf rod arrays, detection of DA in human biological fluids and real time monitoring of DA release from living pheochromocytoma (PC12) cells were performed.


Assuntos
Nanotubos de Carbono/química , Neurotransmissores/análise , Espectroscopia Dielétrica , Dopamina/análise , Epinefrina/análise , Norepinefrina/análise , Tamanho da Partícula , Serotonina/análise , Propriedades de Superfície
14.
Nihon Yakurigaku Zasshi ; 155(3): 135-139, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32378629

RESUMO

Stress potentiates craving for addictive drugs including cocaine. To elucidate neural mechanisms underlying this effect of stress, we developed an experimental paradigm combining cocaine-induced conditioned place preference (CPP) with a restraint stress. Acute restraint stress exposure immediately before posttest significantly increased cocaine CPP scores. It has been suggested that the extracellular noradrenaline (NA) level is increased by stress in the laterodorsal tegmental nucleus (LDT), which sends cholinergic projections to dopamine (DA) neurons in the ventral tegmental area (VTA), and medial prefrontal cortex (mPFC), which receives DA input from the VTA. Thus, we investigated the roles of NA in these brain regions. Intra-LDT injection of an α2 or a ß adrenoceptor antagonist attenuated the stress-induced enhancement of cocaine CPP. In vitro whole-cell recordings revealed that α2 adrenoceptor stimulation reduced GABAergic inputs to LDT cholinergic neurons that were obtained from cocaine-, but not saline-, treated rats. On the other hand, α1, but not α2 or ß, adrenoceptor stimulation excited mPFC pyramidal neurons. Intra-mPFC injection of an α1 adrenoceptor antagonist attenuated the stress-induced enhancement of cocaine CPP. Additionally, chemogenetic silencing of mPFC excitatory neurons also reduced the stress-induced enhancement of cocaine CPP. These findings suggest that stress-induced increases in neuronal activity of the LDT and mPFC may contribute to the enhancement of cocaine craving.


Assuntos
Neurônios Colinérgicos/patologia , Cocaína , Fissura , Estresse Psicológico , Animais , Condicionamento Psicológico , Norepinefrina/análise , Córtex Pré-Frontal , Ratos , Ratos Sprague-Dawley , Restrição Física , Tegmento Mesencefálico
15.
Biomed Chromatogr ; 34(7): e4832, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32190911

RESUMO

Injectable solutions containing epinephrine (EPI) and norepinephrine (NE) are not stable, and their degradation is favored mainly by the oxidation of catechol moiety. As studies of these drugs under forced degradation conditions are scarce, herein, we report the identification of their degradation products (DP) in anesthetic formulations by the development of stability-indicating HPLC method. Finally, the risk assessment of the major degradation products was evaluated using in silico toxicity approach. HPLC method was developed to obtain a higher selectivity allowing adequate elution for both drugs and their DPs. The optimized conditions were developed using a C18 HPLC column, sodium 1-octanesulfonate, and methanol (80:20, v/v) as mobile phase, with a flow rate of 1.5 mL/min, UV detection at 199 nm. The analysis of standard solutions with these modifications resulted in greater retention time for EPI and NE, which allow the separation of these drugs from their respective DPs. Then, five DPs were identified and analyzed by in silico studies. Most of the DPs showed important alerts as hepatotoxicity and mutagenicity. To the best of our acknowledgment, this is the first report of a stability-indicating HPLC method that can be used with formulations containing catecholamines.


Assuntos
Anestésicos , Cromatografia Líquida de Alta Pressão/métodos , Epinefrina , Norepinefrina , Anestesia Dentária , Anestésicos/análise , Anestésicos/química , Anestésicos/toxicidade , Animais , Simulação por Computador , Estabilidade de Medicamentos , Epinefrina/análise , Epinefrina/química , Epinefrina/toxicidade , Limite de Detecção , Modelos Lineares , Camundongos , Norepinefrina/análise , Norepinefrina/química , Norepinefrina/toxicidade , Ratos , Reprodutibilidade dos Testes
16.
Am J Physiol Heart Circ Physiol ; 318(5): H1091-H1099, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216617

RESUMO

The sympathetic nervous system modulates cardiac function by controlling key parameters such as chronotropy and inotropy. Sympathetic control of ventricular function occurs through extrinsic innervation arising from the stellate ganglia and thoracic sympathetic chain. In the healthy heart, sympathetic release of norepinephrine (NE) results in positive modulation of chronotropy, inotropy, and dromotropy, significantly increasing cardiac output. However, in the setting of myocardial infarction or injury, sympathetic activation persists, contributing to heart failure and increasing the risk of arrhythmias, including sudden cardiac death. Methodologies for detection of norepinephrine in cardiac tissue are limited. Present techniques rely on microdialysis for analysis by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ED), radioimmunoassay, or other immunoassays, such as enzyme-linked immunosorbent assay (ELISA). Although significant information about the release and action of norepinephrine has been obtained with these methodologies, they are limited in temporal resolution, require large sample volumes, and provide results with a significant delay after sample collection (hours to weeks). In this study, we report a novel approach for measurement of interstitial cardiac norepinephrine, using minimally invasive, electrode-based, fast-scanning cyclic voltammetry (FSCV) applied in a beating porcine heart. The first multispatial and high temporal resolution, multichannel measurements of NE release in vivo are provided. Our data demonstrate rapid changes in interstitial NE profiles with regional differences in response to coronary ischemia, sympathetic nerve stimulation, and alterations in preload/afterload.NEW & NOTEWORTHY Pharmacological, electrical, or surgical regulation of sympathetic neuronal control can be used to modulate cardiac function and treat arrhythmias. However, present methods for monitoring sympathetic release of norepinephrine in the heart are limited in spatial and temporal resolution. Here, we provide for the first time a methodology and demonstration of practice and rapid measures of individualized regional autonomic neurotransmitter levels in a beating heart. We show dynamic, spatially resolved release profiles under normal and pathological conditions.


Assuntos
Técnicas Eletrofisiológicas Cardíacas/métodos , Coração/fisiologia , Miocárdio/metabolismo , Norepinefrina/análise , Amplificadores Eletrônicos/normas , Animais , Eletrodos/normas , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Feminino , Masculino , Contração Miocárdica , Miocárdio/química , Norepinefrina/metabolismo , Sensibilidade e Especificidade , Suínos
17.
Anal Bioanal Chem ; 412(24): 5945-5954, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32198529

RESUMO

The polymerization of norepinephrine, and the properties of the related polymer polynorepinephrine, started to be investigated barely 9 years ago and only few works were produced so far, mainly in materials science and medicine. An unexpectedly low relevance, especially if compared with the interest toward dopamine and polydopamine, differing from norepinephrine only for a hydroxyl group and whose properties were deeply investigated and applied to an impressive number of subject areas. We show here that in some cases, norepinephrine and dopamine monomers can be exchanged without virtually affecting the experimental results. But even more interesting, the choice of norepinephrine can positively influence the properties of the final polymer. In particular, the smoother and more hydrophilic surface of polynorepinephrine may enhance cell adhesion and proliferation, increase the activity of conjugated biomolecules, and induce higher cellular uptake of nanodrugs. Moreover, polynorepinephrine presents an additional anchoring point that can be exploited for further functionalization. Nevertheless, despite its potential for bioconjugation and molecular recognition, polynorepinephrine has not yet been considered in biosensing. Here we report our feelings in terms of perspective use of polynorepinephrine as new functional monomer for biomimetic receptor development by molecular imprinting, with application in affinity biosensing. Graphical abstracts.


Assuntos
Norepinefrina/análise , Animais , Técnicas Biossensoriais , Adesão Celular , Proliferação de Células , Dopamina/análise , Humanos , Ciência dos Materiais , Impressão Molecular , Estrutura Molecular , Norepinefrina/química , Polimerização , Propriedades de Superfície
18.
Anal Chim Acta ; 1102: 46-52, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32043995

RESUMO

The electrochemical flow cell containing track-etched microporous membrane electrodes was applied to a dual-electrode coulometric detector for microbore/capillary HPLC with a small injection volume and low eluent flow rate. The proposed flow cell with a 0.1-mm diameter inlet channel gave a detection volume of 0.08 nL per electrode, which was determined by the eluent flow through the electrode. For the dual-electrode detector, the calculated volume was 0.24 nL. The efficiency of electrooxidation of l-ascorbic acid increased as the flow rate decreased and was close to 100% when the flow rate was below 50 µL min-1, which is a common flow rate in microbore or capillary liquid chromatography. Catecholamines, such as noradrenaline, adrenaline, and dopamine, were detected by total conversion with two-electron oxidation in the potential range from 0.8 to 1.0 V vs. Ag/AgCl after separation with a microbore column. These peaks were accompanied by corresponding cathodic peaks derived from quasi-stable electrooxidation products of the catecholamines. The detection limits of noradrenaline, adrenaline, and dopamine were 0.1, 0.1, and 0.2 µM, respectively. The RSD values for five replicate measurements of 5.0 µM of these compounds were 0.9%, 0.7%, and 1.5%, respectively. Coulometric detection was also demonstrated by determination of catecholamines in pharmaceuticals.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Membranas Artificiais , Ácido Ascórbico/química , Cromatografia Líquida de Alta Pressão/instrumentação , Dopamina/análise , Dopamina/química , Técnicas Eletroquímicas/instrumentação , Epinefrina/análise , Epinefrina/química , Limite de Detecção , Norepinefrina/análise , Norepinefrina/química , Oxirredução
19.
Physiol Behav ; 216: 112801, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931036

RESUMO

Individual stress coping style (reactive, intermediate and proactive) was determined in 3 groups of 120 pit tagged European seabass using the hypoxia avoidance test. The same three groups (no change in social composition) were then reared according to the standards recommended for this species. Then, 127 days later, individuals initially characterized as reactive, intermediate or proactive were submitted to an acute confinement stress for 30 min. Blood samples were taken to measure plasma cortisol levels 30 min (Stress30) or 150 min (Stress150) after the end of the confinement stress. Individuals were then sacrificed to sample the telencephalon in order to measure the main monoamines and their catabolites (at Stress30 only). Individuals from Stress150 were sampled for whole brain for a transcriptomic analysis. The main results showed that reactive individuals had a lower body mass than intermediate individuals which did not differ from proactive individuals. The physiological cortisol response did not differ between coping style at Stress30 but at Stress150 when intermediate and proactive individuals had recovered pre stress levels, reactive individuals showed a significant higher level illustrating a modulation of stress recovery by coping style. Serotonin turnover ratio was higher in proactive and reactive individuals compared to intermediate individuals and a significant positive correlation was observed with cortisol levels whatever the coping style. Further, the confinement stress led to a general increase in the serotonin turnover comparable between coping styles. Stress150 had a significant effect on target mRNA copy number (Gapdh mRNA copy number decreased while ifrd1 mRNA copy number increased) and such changes tended to depend upon coping style.


Assuntos
Adaptação Psicológica/fisiologia , Bass/fisiologia , Estresse Psicológico/fisiopatologia , Ácido 3,4-Di-Hidroxifenilacético/análise , Animais , Espaços Confinados , Dopamina/análise , Feminino , Hidrocortisona/sangue , Ácido Hidroxi-Indolacético/análise , Masculino , Norepinefrina/análise , Serotonina/análise , Telencéfalo/química , Telencéfalo/metabolismo , Transcriptoma/fisiologia
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165665, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918005

RESUMO

The present study designed to investigate the protective effect of curcumin nanoparticles (CUR-NPs) on the cardiotoxicity induced by doxorubicin. Rats were divided into four groups; control, rats treated daily with CUR-NPs (50 mg/kg) for 14 days, rats treated with an acute dose of doxorubicin (20 mg/kg) and rats treated daily with CUR-NPs for 14 days injected with doxorubicin on the 10th day. After electrocardiogram (ECG) recording from rats at different groups, rat decapitation was carried out and the heart of each rat was excised out to measure the oxidative stress parameters; lipid peroxidation (MDA), nitric oxide (NO) and reduced glutathione (GSH) and the activities of Na,K,ATPase and acetylcholinesterase (AchE). In addition, the levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were determined in the cardiac tissues. Lactate dehydrogenase (LDH) activity was measured in the serum. The ECG recordings indicated that daily pretreatment with CUR- NPs has prevented the tachycardia (i.e. increase in heart rate) and ameliorated the changes in ST wave and QRS complex induced by doxorubicin. In addition, CUR-NPs prevented doxorubicin induced significant increase in MDA, NO, DA, AchE and LDH and doxorubicin induced significant decrease in GSH, NE, 5-HT and Na,K,ATPase. According to the present findings, it could be concluded that CUR-NPs have a protective effect against cardiotoxicity induced by doxorubicin. This may shed more light on the importance of CUR-NPs pretreatment before the application of doxorubicin therapy.


Assuntos
Cardiotônicos/administração & dosagem , Cardiotoxicidade/prevenção & controle , Curcumina/administração & dosagem , Doxorrubicina/toxicidade , Coração/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Cardiotoxicidade/patologia , Modelos Animais de Doenças , Dopamina/análise , Dopamina/metabolismo , Eletrocardiografia , Proteínas Ligadas por GPI/metabolismo , Glutationa/análise , Glutationa/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/patologia , Nanopartículas/administração & dosagem , Norepinefrina/análise , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Serotonina/análise , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...